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Abstract. The necessary conditions that the spurious state associated with the translational motion and
its double-phonon state have zero excitation energy in Extended RPA (ERPA) theories which include both
one-body and two-body amplitudes are investigated using the small-amplitude limit of the time-dependent
density-matrix theory (STDDM). STDDM provides us with a quite general form of ERPA, as compared
with other similar theories, in the sense that all components of one-body and two-body amplitudes are
taken into account. Two conditions are found necessary to guarantee the above property of the single and
double spurious states: The first is that no truncation in the single-particle space should be made. This
condition is necessary for the closure relation to be used and is common for the single and double spurious
states. The second depends on the mode. For the single spurious state all components of the one-body
amplitudes must be included, and for the double spurious state all components of one-body and two-body
amplitudes have to be included. It is also shown that the Kohn theorem and the continuity equations for
transition densities and currents hold under the same conditions as the spurious states. ERPA theories
formulated using the Hartree-Fock ground state have a non-hermiticity problem. A method for formulating
ERPA with hermiticity is also proposed using the time-dependent density-matrix formalism.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations

1 Introduction

The double-phonon states of giant resonances have be-
come the subject of a number of recent experimental and
theoretical investigations [1,2]. In the case of giant reso-
nances (single-phonon states), the Random Phase Approx-
imation (RPA) has extensively been used as a standard
microscopic theory to study basic properties of giant res-
onances [3]. It is guaranteed in RPA that physical states
do not couple to spurious states such as that associated
with the translational motion because RPA in the Hartree-
Fock (HF) basis gives zero excitation energy to spurious
states [4]. For a microscopic study of the double-phonon
states of giant resonances, we need to extend RPA to deal
with two-body amplitudes as well as one-body amplitudes.
One of such an Extended RPA theory (ERPA) may be the
Second RPA (SRPA) [5] which has also extensively been
used to study decay properties of giant resonances [6,7].
When the double-phonon states are studied in ERPA, it
should be guaranteed that both spurious states and their
double-phonon states are decoupled from physical states.
The aim of this paper is to investigate the necessary con-
ditions that the spurious state associated with the trans-
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lational motion and its double-phonon state, i.e. the sin-
gle and double spurious modes, have zero excitation en-
ergy in ERPA. We use the small-amplitude limit of the
time-dependent density-matrix theory (STDDM) [8]. The
reason why STDDM is used is that, containing all compo-
nents of one-body and two-body amplitudes, STDDM con-
stitutes a more general framework of ERPA than SRPA. It
will be shown that keeping all components of the one-body
and two-body amplitudes in ERPA is essential in bringing
the spurious states to zero excitation energy. We would like
to point out that to our knowledge the issue of the double
spurious mode in ERPAs has never been addressed before
in the literature. Any ERPA including STDDM, which
is formulated using an approximate ground state, inher-
ently has asymmetry and non-hermiticity. A method for
recovering symmetry and hermiticity in the framework of
the time-dependent density-matrix formalism is also pro-
posed in this paper. The paper is organized as follows:
STDDM is presented and its relation to other ERPA for-
mulations is discussed in sect. 2. The necessary conditions
to give zero excitation energy to the spurious state associ-
ated with the translational motion and its double-phonon
state are discussed in sect. 3. The Kohn theorem [9–11]
and the continuity equations for transition densities and
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currents are also discussed as related subjects in sect. 3. In
sect. 4 a method for formulating ERPA with hermiticity
is proposed and sect. 5 is devoted to a summary.

2 Extended RPA formalism

2.1 Small-amplitude limit of the time-dependent
density-matrix theory

The time-dependent density-matrix theory (TDDM) gives
the time evolution of a one-body density-matrix ρ(1, 1′)
and the correlated part C(12, 1′2′) of a two-body density-
matrix [12], where numbers denote space, spin, and isospin
coordinates. Linearizing the equations of motion for ρ and
C with respect to δρ and δC, where δρ and δC denote
deviations from the ground-state values ρ0 and C0, i.e.
δρ = ρ − ρ0 and δC = C − C0, respectively, we obtain
STDDM [8]. Expanding δρ and δC with single-particle
states ψα as

δρ(11′, t) =
∑
αα′

xαα′(t)ψα(1, t)ψ∗
α′(1′, t), (1)

δC(121′2′, t) =
∑

αβα′β′
Xαβα′β′(t)

×ψα(1, t)ψβ(2, t)ψ∗
α′(1′, t)ψ∗

β′(2′, t), (2)

and assuming the HF ground state, that is, ρ0 is the one-
body density-matrix in HF approximation and C0 = 0, we
obtain the following equations of STDDM for the Fourier
components of xαα′(t) and Xαβα′β′(t) [8]:

(ω − εα + εα′)xαα′ = (fα′ − fα)
∑
λλ′

〈αλ|v|α′λ′〉Axλ′λ

+
∑

λλ′λ′′
[Xλλ′α′λ′′〈αλ′′|v|λλ′〉

−Xαλ′λλ′′〈λλ′′|v|α′λ′〉], (3)

(ω − εα − εβ + εα′ + εβ′)Xαβα′β′ =

−
∑

λ

[(f̄βfα′fβ′ + fβ f̄α′ f̄β′)〈λβ|v|α′β′〉Axαλ

+(f̄αfα′fβ′ + fαf̄α′ f̄β′)〈αλ|v|α′β′〉Axβλ

−(f̄αf̄βfβ′ + fαfβ f̄β′)〈αβ|v|λβ′〉Axλα′

−(f̄αf̄βfα′ + fαfβ f̄α′)〈αβ|v|α′λ〉Axλβ′ ]

+
∑
λλ′

[(1 − fα − fβ)〈αβ|v|λλ′〉Xλλ′α′β′

−(1 − fα′ − fβ′)〈λλ′|v|α′β′〉Xαβλλ′ ]

+
∑
λλ′

[(fα′ − fα)〈αλ|v|α′λ′〉AXλ′βλβ′

−(fβ′ − fα)〈αλ|v|λ′β′〉AXλ′βα′λ

+(fβ′ − fβ)〈λβ|v|λ′β′〉AXαλ′α′λ

−(fα′ − fβ)〈λβ|v|α′λ′〉AXαλ′λβ′ ], (4)

where εα is the HF single-particle energy, fα = 1(0)
for occupied (unoccupied) single-particle states and
f̄α = 1 − fα, and the subscript A indicates that the corre-
sponding matrix element is antisymmetrized. Let us men-
tion that eqs. (3) and (4) may also be obtained from the
following equations of motion:

〈Φ0|[a+
α′aα,H]|Φ〉 = ω〈Φ0|a+

α′aα|Φ〉, (5)

〈Φ0|[a+
α′a

+
β′aβaα,H]|Φ〉 = ω〈Φ0|a+

α′a
+
β′aβaα|Φ〉, (6)

where [ ] is the commutation relation, H the total Hamil-
tonian consisting of the kinetic energy term and a two-
body interaction, |Φ0〉 the ground-state wave function and
|Φ〉 the wave function for an excited state with excita-
tion energy ω. Linearizing eqs. (5) and (6) with respect to
xαα′ = 〈Φ0|a+

α′aα|Φ〉 and Xαβα′β′ = 〈Φ0|a+
α′a

+
β′aβaα|Φ〉,

and assuming the HF ground state for |Φ0〉 when expec-
tation values for the ground state are evaluated such as
〈Φ0|a+

αaα′ |Φ0〉 ≈ δαα′fα, we obtain eqs. (3) and (4).
In the following, we discuss some relations of STDDM

with RPA and other versions of ERPA. When the coupling
to the two-body amplitudes Xαβα′β′ is neglected in eq. (3),
the equation for the one-body amplitudes becomes

(ω− εα + εα′)xαα′ = (fα′ − fα)
∑
λλ′

〈αλ|v|α′λ′〉Axλ′λ. (7)

When fα is the Fermi-Dirac distribution, eq. (7) is equiv-
alent to the finite-temperature RPA [13,14]. Hereafter,
single-particle indices p and h are used to refer to un-
occupied and occupied single-particle states, respectively.
Since the sums on the right-hand sides of the equations
for xph and xhp are unrestricted, xph and xhp can couple
to xpp′ and xhh′ . Such a coupling scheme of eq. (7) may
be better understood in matrix form

see equation (8) on the next page

where obvious summation symbols and Kronecker’s δ’s are
omitted for simplicity. Since the Hamiltonian matrix is
non-Hermitian, xαα′ is orthogonal not to xαα′ but to a
left-hand-side eigenvector x̃αα′ which satisfies

(ω − εα + εα′)x̃∗αα′ =
∑
λλ′

(fλ′ − fλ)〈λα′|v|λ′α〉Ax̃∗λλ′

=
∑
ph

(〈pα′|v|hα〉Ax̃∗ph − 〈hα′|v|pα〉Ax̃∗hp)

(at temperature T = 0). (9)

The matrix form of eq. (9) becomes

see equation (10) on the next page.

The orthonormal condition is written as

〈λ̃|λ′〉 =
∑
αα′

x̃∗αα′(λ)xαα′(λ′) = δλλ′ , (11)

where |λ〉 represents an eigenvector xαα′ with the eigen-
value ωλ, and |λ̃〉 the left-hand-side eigenvector of the
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εp − εh + 〈ph′|v|hp′〉A 〈pp′|v|hh′〉A 〈pp′|v|hp′′〉A 〈ph′|v|hh′′〉A
−〈hh′|v|pp′〉A εh − εp − 〈hp′|v|ph′〉A −〈hp′|v|pp′′〉A −〈hh′|v|ph′′〉A

0 0 εp − εp′ 0
0 0 0 εh − εh′







xp′h′

xh′p′

xp′′p′

xh′′h′


 = ω




xph

xhp

xpp′

xhh′


 , (8)

( x̃∗
p′′h′′ , x̃∗

h′′p′′ , x̃∗
pp′ , x̃∗

hh′)




εp − εh + 〈p′′h|v|h′′p〉A 〈p′′p|v|h′′h〉A 〈p′′p|v|h′′p′〉A 〈p′′h|v|h′′h′〉A
−〈h′′h|v|p′′p〉A εh − εp − 〈h′′p|v|p′′h〉A −〈h′′p|v|p′′p′〉A −〈h′′h|v|p′′h′〉A

0 0 εp − εp′ 0
0 0 0 εh − εh′




= ω
(
x̃∗

ph, x̃∗
hp, x̃∗

pp′ , x̃∗
hh′

)
. (10)

Hamiltonian matrix with the eigenvalue ωλ. The com-
pleteness relation becomes

∑
λ

|λ〉〈λ̃| =
∑

λ

xαα′(λ)x̃∗ββ′(λ) = I, (12)

where I is the unit matrix. These orthonormal and com-
pleteness relations are generalizations of the RPA ones.
Due to the occupation factor fα − fα′ , the one-body am-
plitudes xpp′ and xhh′ vanish unless ω = εα − εα′ (see
eq. (7)), whereas x̃αα′ always have all components as seen
from eq. (9): x̃αα′ corresponds to the generalized RPA am-
plitude which appears in the Landau’s expression for the
damping width of zero sound [15,16]. If the particle (p)-
particle (p) and hole (h)-hole (h) components of xαα′ are
neglected, eq. (7) is reduced to the RPA equations,

(ω − εp + εh)xph =
∑
p′h′

[〈ph′|v|hp′〉Axp′h′

+〈pp′|v|hh′〉Axh′p′ ], (13)

(ω − εh + εp)xhp = −
∑
p′h′

[〈hh′|v|pp′〉Axp′h′

+〈hp′|v|ph′〉Axh′p′ ]. (14)

When the coupling to the one-body amplitudes is ne-
glected in eq. (4), the equation for the two-body ampli-
tudes becomes

(ω − εα − εβ + εα′ + εβ′)Xαβα′β′ =∑
λλ′

[(1 − fα − fβ)〈αβ|v|λλ′〉Xλλ′α′β′

−(1 − fα′ − fβ′)〈λλ′|v|α′β′〉Xαβλλ′ ]

+
∑
λλ′

[(fα′ − fα)〈αλ|v|α′λ′〉AXλ′βλβ′

−(fβ′ − fα)〈αλ|v|λ′β′〉AXλ′βα′λ

+(fβ′ − fβ)〈λβ|v|λ′β′〉AXαλ′α′λ

−(fα′ − fβ)〈λβ|v|α′λ′〉AXαλ′λβ′ ]. (15)

This equation is equivalent to the formula given in ref. [17]
for the two-body space. Keeping only the 2p-2h, 2h-2p and
1p1h-1p1h components of Xαβα′β′ in eq. (15) leads to the

version of ERPA for low-lying two-phonon states [18]. It
has been pointed out [18] that the 1p1h-1p1h components
of Xαβα′β′ are important to reproduce collectivity of low-
lying double-phonon states. A time-dependent version of
eq. (15) has been applied to the double-phonon states of
giant dipole and quadrupole resonances in 40Ca using a re-
alistic Skyrme-type interaction for both the mean-field po-
tential and the residual interaction, and it was found that
the 2p-2h, 2h-2p and 1p1h-1p1h components are the most
important two-body amplitudes for these double-phonon
states [19]. In eqs. (3) and (4) the one-body amplitude
xαα′ and the two-body amplitude Xαβα′β′ have all com-
ponents: For example, xαα′ has 1p-1h, 1h-1p, 1p-1p and
1h-1h components. On the other hand, only the 1p-1h and
1h-1p components of xαα′ and the 2p-2h and 2h-2p com-
ponents of Xαβα′β′ are taken into account in SRPA [5]
and the SRPA equations are obtained from eqs. (3) and
(4) by keeping only these amplitudes.

Equations (3) and (4) have asymmetric couplings be-
tween the xαα′ and Xαβα′β′ amplitudes: In eq. (3) xαα′

couples to all components of Xαβα′β′ , while in eq. (4) only
the 2p-2h, 1p-3h and 1h-3p components of Xαβα′β′ (and
their complex conjugates) couple to xαα′ due to the oc-
cupation factors (f̄βfα′fβ′ etc.). Equations (7) and (15)
which have no coupling between one-body and two-body
amplitudes are also non-Hermitian due to occupation fac-
tors such as fα′ −fα. The asymmetry and non-hermiticity
originate from the structure of the equations for the re-
duced density matrices (see eqs. (5) and (6)). For a non-
Hermitian Hamiltonian matrix, the left-hand-side eigen-
vectors of the Hamiltonian matrix constitute a basis which
is orthogonal to (xαα′ ,Xαβα′β′), and the orthonormal con-
dition is written as

〈λ̃|λ′〉 =
∑
αα′

x̃∗αα′(λ)xαα′(λ′)

+
∑

αβα′β′
X̃∗

αβα′β′(λ)Xαβα′β′(λ′) = δλλ′ , (16)

where |λ〉 represents an eigenvector (xαα′ ,Xαβα′β′) with
the eigenvalue ωλ, and |λ̃〉 the left-hand-side eigenvector
of the Hamiltonian matrix with the same eigenvalue. The
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completeness relation is written as

∑
λ

(
xαα′(λ)

Xαβα′β′(λ)

)
(x̃∗ββ′(λ) X̃∗

βγβ′γ′(λ)) = I. (17)

The asymmetry and non-hermiticity in eqs. (3) and (4)
are necessary to prove the properties of the spurious states
and the Kohn theorems as will be discussed below. How-
ever, due to the non-hermiticity of the problem, some of
the eigenvalues may become complex. Our exploratory nu-
merical calculations for the oxygen isotopes 22,24O using
the neutron 2s and 1d states and a pairing-type resid-
ual interaction which had been used in the calculations of
quadrupole states in these nuclei [20] show that the non-
hermiticity of STDDM is quite moderate: Only a small
fraction (about 10%) of the eigenstates have complex en-
ergies, whose imaginary parts are less than 0.1 MeV. The
results of these numerical calculations will be discussed
elsewhere. On the other hand, we will show in sect. 4 that
there is a prescription for constructing ERPA with sym-
metry and hermiticity using a correlated ground state in
TDDM.

3 Single and double spurious states

3.1 One-body and two-body operators for the
translational motion

We consider the following one-body and two-body opera-
tors associated with the translational motion:

P =
∑
αβ

〈α| − i∇|β〉a+
αaβ (18)

and

P · P =
∑
αα′

〈α| − ∇2|α′〉a+
αaα′

+
∑

αβα′β′
〈α| − i∇|α′〉 · 〈β| − i∇|β′〉a+

αa
+
β aβ′aα′ . (19)

Since the Hamiltonian H has translational invariance,
these operators commute with H, that is, [H,P ] = [H,P ·
P ] = 0. We will evaluate ω〈Φ0|P |Φ1〉 and ω〈Φ0|P ·P |Φ2〉,
where |Φ1〉 and |Φ2〉 are the spurious states excited with
P and P · P , respectively, and show that these states
have zero excitation energy in STDDM. The evaluation
of ω〈Φ0|P |Φ1〉 and ω〈Φ0|P · P |Φ2〉 using the equations
of motion for the transition amplitudes is equivalent to
that of 〈Φ0|[P ,H]|Φ1〉 and 〈Φ0|[P · P ,H]|Φ2〉, provided
that 〈Φ0|[P ,H]|Φ1〉 and 〈Φ0|[P ·P ,H]|Φ2〉 are calculated
in the same way as used to derive the equations of mo-
tion for the transition amplitudes. In the case of the exact
problem, it is, with eqs. (5) and (6), trivial to see that
ω〈Φ0|P |Φ1〉 and ω〈Φ0|P · P |Φ2〉 are identical to zero be-
cause the left-hand sides of eqs. (5) and (6) are reduced to
the commutation relations between the Hamiltonian and
these translational operators. Since the linearization and
the HF assumption are made in the derivation of STDDM,

it is not trivial to show the above properties of the spurious
states. However, the linearization should be valid in the
weak-coupling limit and therefore we can anticipate that
the Goldstone theorem also holds in this case, provided
that the linearization procedure is correctly performed.

3.2 Spurious states in RPA

As is well known, RPA gives zero excitation energy to the
spurious state |Φ1〉 excited with P , although only the 1p-
1h and 1h-1p components of the one-body amplitudes are
taken into account in spite of the fact that P also contains
in addition 1p-1p and 1h-1h components. To illustrate our
approach for the problem of the spurious states, we begin
with proving ω〈Φ0|P |Φ1〉 = 0 in RPA. Using the relation
〈Φ0|a+

α′aα|Φ1〉 = xαα′ and eqs. (13) and (14) for xph and
xhp, we modify ω〈Φ0|P |Φ1〉 as

ω〈Φ0|iP |Φ1〉 = ω
∑
ph

[〈h|∇|p〉xph + 〈p|∇|h〉xhp]

=
∑
ph

[〈h|∇|p〉(εp − εh)xph + 〈p|∇|h〉(εh − εp)xhp]

+
∑

php′h′
[〈h|∇|p〉(〈ph′|v|hp′〉Axp′h′ + 〈pp′|v|hh′〉Axh′p′)

−〈p|∇|h〉(〈hp′|v|ph′〉Axh′p′ + 〈hh′|v|pp′〉A)xp′h′ ]. (20)

A further modification is made using h0ψα = εαψα, where
h0 is the HF single-particle Hamiltonian, and the closure
relation

∑
p ψp(r)ψ∗

p(r′) = δ3(r − r′) − ∑
h ψh(r)ψ∗

h(r′):

ω〈Φ0|iP |Φ1〉 =
∑
ph

[〈h|[∇, h0]|p〉xph + 〈p|[∇, h0]|h〉xhp]

+
∑
hph′

[(〈hh′|∇1v|hp〉A−〈hh′|v∇1|hp〉+〈hh′|v∇2|ph〉)xph′

+(〈hp|∇1v|hh′〉A − 〈hp|v∇1|hh′〉 + 〈hp|v∇2|h′h〉)xh′p)].
(21)

The first term on the right-hand side of the above equation
can be written in terms of v using

〈α′|[∇, h0]|α〉 =
∑

h

[〈α′h|(∇1v)|αh〉A

−〈α′h|v∇1|hα〉 + 〈α′h|v∇2|hα〉]. (22)

Finally eq. (21) becomes

ω〈Φ0|iP |Φ1〉 =
∑
phh′

[(〈hh′|(∇1v)|ph′〉A − 〈hh′|v∇1|h′p〉

+〈hh′|v∇2|h′p〉)xph + (〈ph′|(∇1v)|hh′〉A
−〈ph′|v∇1|h′h〉 + 〈ph′|v∇2|h′h〉)xhp]

+
∑
phh′

[(〈h′h|(∇1v)|h′p〉A − 〈h′h|v∇1|ph′〉

+〈h′h|v∇2|ph′〉)xph + (〈h′p|(∇1v)|h′h〉A
−〈h′p|v∇1|hh′〉 + 〈h′p|v∇2|hh′〉)xhp)], (23)
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where (∇1v) means that ∇1 acts only on v. Since v has
translational invariance, the sum of the following two
terms on the right-hand side of eq. (23) becomes zero:

〈hh′|(∇1v)|ph′〉A + 〈h′h|(∇1v)|h′p〉A =
〈hh′|(∇1v) + (∇2v)|ph′〉A = 0. (24)

Another sum of the two terms also vanishes

−〈hh′|v∇1|h′p〉 + 〈h′h|v∇2|ph′〉 =
〈h′h| − v∇2 + v∇2|ph′〉 = 0. (25)

Similarly, all other terms on the right-hand side of eq. (23)
cancel out. This means ω = 0. As shown above, both
the inclusion of the backward amplitude xhp and the un-
restricted sum over unoccupied single-particle states are
essential in RPA to give zero excitation energy to the spu-
rious state [4]. A detailed numerical investigation for the
elimination of spurious-state mixing in the case of RPA
has recently been carried out by Agrawal et al. [21].

3.3 Spurious state in STDDM

Along the lines illustrated above, we then show that
ω〈Φ0|P |Φ1〉 = 0 in STDDM. Using the equation for xαα′

(eq. (3)), we modify ω〈Φ0|P |Φ1〉 as

ω〈Φ0|iP |Φ1〉 =
∑
αα′

〈α′|∇|α〉ωxαα′

=
∑
αα′

〈α′|∇|α〉{(εα − εα′)xαα′

+(fα′ − fα)
∑
λλ′

〈αλ|v|α′λ′〉Axλ′λ

+
∑

λλ′λ′′
[Xλλ′α′λ′′〈αλ′′|v|λλ′〉

−Xαλ′λλ′′〈λλ′′|v|α′λ′〉]}, (26)

where the sums are over both occupied and unoccupied
single-particle states. Using h0ψα = εαψα and the closure
relation

∑
α ψ(r)ψ∗

α(r′) = δ3(r − r′), we further modify
eq. (26) as

ω〈Φ0|iP |Φ1〉 =
∑
αα′

〈α′|[∇, h0]|α〉xαα′

+
∑
λλ′h

[〈hλ|∇1v|hλ′〉A − (〈hλ|v∇1|hλ′〉

−〈hλ|v∇2|λ′h〉)]xλ′λ +
∑

αα′λλ′λ′′
[Xλλ′α′λ′′〈α′λ′′|∇1v|λλ′〉

−Xαλ′λλ′′〈λλ′′|v∇1|αλ′〉]. (27)

Using eq. (22) and changing summation indices, we obtain

ω〈Φ0|iP |Φ1〉 =
∑
αα′h

[〈α′h|(∇1v)|αh〉A − 〈α′h|v∇1|hα〉

+〈α′h|v∇2|hα〉 + 〈hα′|(∇1v)|hα〉A − 〈hα′|v∇1|αh〉
+〈hα′|v∇2|αh〉)]xαα′ +

∑
αβα′β′

Xαβα′β′〈α′β′|(∇1v)|αβ〉.

(28)

The first sum on the right-hand side of the above equation
which includes terms proportional to xαα′ is a generaliza-
tion of eq. (23) and vanishes for an interaction v with
translational invariance. The second term on the right-
hand side of eq. (28) can be expressed as

∑
αβα′β′

Xαβα′β′〈α′β′|(∇1v)|αβ〉

=
1
2

∑
αβα′β′

Xαβα′β′(〈α′β′|(∇1v)|αβ〉 + 〈β′α′|(∇1v)|βα〉)

=
1
2

∑
αβα′β′

Xαβα′β′〈α′β′|(∇1v) + (∇2v)|αβ〉. (29)

Since v has translational invariance, (∇1v) + (∇2v) = 0.
Thus, again ω〈Φ0|P |Φ1〉 = 0 is proven. As shown above,
unrestricted summation over the single-particle indices α
and α′ in eq. (26) is essential to derive the last term on
the right-hand side of eq. (27). This means that, contrary
to the standard RPA where only ph and hp components
of P are needed, any ERPA formalisms with restricted
one-body amplitudes cannot give zero excitation energy
to the spurious state associated with the translational mo-
tion. However, this does not depend on approximations for
two-body amplitudes as long as the symmetry property is
respected as seen in eq. (29).

3.4 Double spurious state in STDDM

In a way similar to the above, we show that ω〈Φ0|P ·
P |Φ2〉 = 0, where |Φ2〉 is the double spurious state. The
term ω〈Φ0|P ·P |Φ2〉 contains both the one-body and two-
body contributions,

−ω〈Φ0|P · P |Φ2〉 =

ω

{∑
αα′

(〈α′|∇2|α〉 −
∑

h

2〈α′|∇|h〉 · 〈h|∇|α〉)xαα′

+
∑

αβα′β′
〈α′|∇|α〉 · 〈β′|∇|β〉Xαβα′β′

}
. (30)

Using eqs. (3) and (4) for xαα′ and Xαβα′β′ , h0ψα = εαψα

and the closure relation
∑

α ψ(r)ψ∗
α(r′) = δ3(r − r′), we

modify the right-hand side of the above equation. After
some lengthy manipulations, the terms containing xαα′

and one summation index over occupied single-particle
states become

2
∑
αα′h

[〈α′h|(∇2
1v)|αh〉A + 〈α′h|(∇1v) · ∇1|αh〉

−〈α′h|(∇1v) · ∇1|hα〉 + 〈hα′|(∇1v) · ∇1|hα〉
−〈hα′|(∇1v) · ∇1|αh〉]xαα′

+2
∑
αα′h

[〈α′h|(∇1 · ∇2v)|αh〉A + 〈α′h|(∇1v) · ∇2|αh〉

−〈α′h|(∇1v) · ∇2|hα〉 + 〈α′h|(∇2v) · ∇1|αh〉
−〈α′h|(∇2v) · ∇1|hα〉]xαα′ , (31)



208 The European Physical Journal A

where the first sum comes from the terms with xαα′ on the
right-hand side of eq. (30) and the second sum from the
term with Xαβα′β′ . Since v has translational invariance,
(∇2

1v)+(∇1 ·∇2v) = 0. Therefore, the sum of the following
two terms in eq. (31) becomes 〈α′h|(∇2

1v)|αh〉A+〈α′h|(∇1·
∇2v)|αh〉A = 0. All other terms vanish for similar reasons.
In addition to the terms shown in eq. (31), there appear
terms with xαα′ and two summation indices over occu-
pied single-particle states, and also terms with Xαβα′β′

in the modification process of eq. (30). It is straight-
forward, though lengthy, to show that these terms also
vanish for a translationally invariant interaction. Thus
ω〈Φ0|P · P |Φ2〉 = 0, that is, ω = 0. As mentioned above,
unrestricted summation over single-particle states is again
essential to obtain this conclusion. This means that only
ERPAs with all one-body and two-body amplitudes, that
is, xph, xhp, xpp′ , xhh′ ,Xpp′hh′ ,Xhh′pp′ , Xphp′h′ ,Xphh′h′′ ,
Xh′h′′ph,Xpp′hp′′ , Xhp′′pp′ , Xpp′p′′p′′′ and Xhh′h′′h′′′ , give
zero excitation energy to the double-phonon state corre-
sponding to the spurious mode associated with the trans-
lational motion. Let us also point out that in taking into
account all amplitudes of x and X may seem trivial that
the Goldstone modes are restored. We should not forget,
however, that in the derivation of STDDM we have made
quite drastic approximations which make it necessary to
show explicitly that the invariances are fulfilled. Since
STDDM and the ERPA with hermiticity, which will be
given in sect. 4, are formulated using all one-body and
two-body amplitudes, they may have zero-energy solu-
tions. These zero-energy solutions presumably couple to
the spurious modes if they have the same quantum num-
bers as the spurious modes. However, as long as these
ERPAs are applied to study collective states such as gi-
ant resonances, the coupling of the spurious modes to the
zero-energy solutions cannot be a serious problem. Indeed,
in a subsequent paper with numerical applications, we will
show that zero-energy solutions cause no problem.

3.5 Single and double Kohn modes

When a system is confined to a harmonic potential
U = 1

2mω
2
0r

2, the spurious mode associated with the
translational motion has an eigenvalue of �ω0, indepen-
dently of the translationally invariant two-body interac-
tion. This property is known as the Kohn theorem [9–11].
In this section we show that our ERPA equations satisfy
the Kohn theorem and also that the eigenvalue of the
double Kohn mode becomes 2�ω0. Due to the presence
of the harmonic potential the single-particle states are
chosen to be eigenstates of the modified Hamiltonian,
h′ψα = εαψα, where h′ = h0 + 1

2mω
2
0r

2. In a way similar
to the spurious mode, we evaluate ω〈Φ0|P |Φ1〉 using
the equations of motion in STDDM. Since the two-body
interaction has translational invariance, terms with the
two-body interaction vanish and

ω〈Φ0|iP |Φ1〉 = −
∑
αα′

〈α|mω2
0r|α′〉xα′α = −mω2

0〈Φ0|Q|Φ1〉
(32)

holds, where Q =
∑〈α|r|α′〉a+

αaα′ . Similarly, a non-
vanishing contribution to ω〈Φ0|Q|Φ1〉 comes only from
the kinetic energy term, and we obtain

ω〈Φ0|Q|Φ1〉 = −�
2

m
〈Φ0|iP |Φ1〉. (33)

As for the spurious mode in the case of translational
invariance, subsect. 3.3, it is essential to keep all com-
ponents of the one-body amplitudes to obtain the above
expressions. From eqs. (32) and (33), we get ω = ±�ω0.

In the case of the double Kohn mode, expectation val-
ues of three operators couple in the following way:

ω〈Φ0|iP · iP |Φ2〉 = 2mω2
0〈Φ0|Q · iP |Φ2〉, (34)

ω〈Φ0|Q · iP |Φ2〉 =
�

2

m
〈Φ0|iP · iP |Φ2〉

+mω2
0〈Φ0|Q · Q|Φ2〉, (35)

ω〈Φ0|Q · Q|Φ2〉 = 2
�

2

m
〈Φ0|Q · iP |Φ2〉. (36)

The right-hand side of eq. (34) comes from the harmonic
potential. Both the kinetic energy term and the harmonic
potential contribute to the right-hand side of eq. (35),
and the kinetic energy term becomes non-vanishing on
the right-hand side of eq. (36). All terms with the two-
body interaction vanish due to translational invariance.
It is essential to keep all components of the one-body and
two-body amplitudes to derive eqs. (34)-(36) as in the case
of the double spurious mode discussed in sect. 3.4. From
the above equations we get ω = ±2�ω0.

3.6 Continuity equations

We end this section by showing that our ERPA equations
satisfy continuity equations. In a way similar to the single
spurious mode we evaluate ωλ〈Φ0|ρ̂(r)|Φλ〉, where ρ̂ is the
density operator ρ̂(r) =

∑
ψ∗

α(r)ψα′(r)a+
αaα′ , and obtain

ωλ〈Φ0|ρ̂(r)|Φλ〉 = −∇ · 〈Φ0|j(r)|Φλ〉, (37)

where the current operator j is given by

j(r) =
�

2

2m

∑
[ψ∗

α(r)∇ψα′(r) − (∇ψ∗
α(r))ψα′(r)]a+

αaα′

(38)
for a momentum-independent two-body interaction. Thus,
the continuity equation for the one-body transition den-
sity and current is satisfied. Keeping all components of the
one-body amplitudes is essential to obtain the continuity
equation.

Similarly, the transition amplitude for the two-body
density operator ρ̂2(r, r′) defined by

ρ̂2(r, r′) =
∑

αβα′β′
ψ∗

α(r)ψ∗
β(r′)ψβ′(r′)ψα′(r)a+

αa
+
β aβ′aα′

(39)
satisfies the continuity equation

ωλ〈Φ0|ρ̂2(r, r′)|Φλ〉 = −(∇r · 〈Φ0|j2(r, r′)|Φλ〉
+∇r′ · 〈Φ0|j2(r′, r)|Φλ〉), (40)
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where the two-body current operator j2 for a momentum-
independent two-body interaction is given by

j2(r, r′) =
�

2

2m

∑
[ψ∗

α(r)(∇ψα′(r))

−(∇ψ∗
α(r))ψα′(r))]ψ∗

β(r′)ψβ′(r′)a+
αa

+
β aβ′aα′ . (41)

In the derivation of eq. (40) it is again essential to keep all
components of the one-body and two-body amplitudes.

4 ERPA with hermiticity

The equations of STDDM (eqs. (3) and (4)) show asym-
metry and non-hermiticity, although this causes no prob-
lem in conserving various physical properties as discussed
above. In the following we show that ERPA with symme-
try and hermiticity can be formulated using the equation-
of-motion approach [22] and the correlated ground state in
TDDM. We have pointed out [23], in deriving Landau’s ex-
pression for the spreading width of a collective state, that
it is important to include ground-state correlations to re-
move the asymmetry in STDDM. It is well known [22] that
the asymmetry problem always appears in the equation-of-
motion approach when the ground state is replaced by an
approximate one. Before presenting the formulation of our
ERPA, therefore, we summarize the origin of the asym-
metry in the equation-of-motion approach. When |Φ0〉 is
the exact ground state of the Hamiltonian, there exists an
identity involving a one-body operator A = a+

αaα′ and a
two-body operator B = a+

αa
+
β aβ′aα′ :

〈Φ0|[[B,H], A]|Φ0〉 − 〈Φ0|[[A,H], B]|Φ0〉 =
〈Φ0|[H, [A,B]]|Φ0〉 = 0. (42)

When |Φ0〉 is approximated by the HF ground state, the
above identity is violated, that is,

〈Φ0|[H, [A,B]]|Φ0〉 �= 0 (43)

and, consequently,

〈Φ0|[[B,H], A]|Φ0〉 �= 〈Φ0|[A,H], B]|Φ0〉. (44)

Since the left-hand side of the above equation describes
the coupling of the one-body amplitudes to the two-body
ones, and the right-hand side that of the two-body am-
plitudes to the one-body ones, the resulting ERPA has
asymmetric couplings. In order to avoid the difficulty of
eq. (44), Rowe introduced a symmetrized double commu-
tator [22]. However, it was pointed out [16] that there is
an ambiguity in the choice of such a double commutator.

Now we proceed to the presentation of our ERPA
with ground-state correlations. The ground state |Φ0〉 in
TDDM is constructed so that

〈Φ0|[H, a+
αaα′ ]|Φ0〉 = 0 (45)

and
〈Φ0|[H, a+

αa
+
β aβ′aα′ ]|Φ0〉 = 0 (46)

are satisfied for any single-particle indices [8]. In other
words the occupation matrix n0

αα′ and the correlation ma-
trix C0

αβα′β′ , the expansion coefficients of ρ0 and C0, re-
spectively, are determined in TDDM so that the above
two equations are satisfied. The explicit expression for
eqs. (45) and (46) depends on the single-particle state ψα.
The equations for n0

αα′ and C0
α′β′αβ shown in appendix A

are obtained when ψα is chosen to be an eigenstate of the
mean-field Hamiltonian h0(ρ0), that is,

h0(ρ0)ψα(1) = −�
2∇2

2m
ψα(1)

+
∫

d2v(1, 2)[ρ0(2, 2)ψα(1)−ρ0(1, 2)ψα(2)] = εαψα(1),

(47)

where
ρ0(11′) =

∑
αα′

n0
αα′ψα(1)ψ∗

α′(1′). (48)

Although it is not evident to find an analytic solution of
eqs. (45) and (46) [24], a method for obtaining n0

αα′ and
C0

αβα′β′ numerically has been proposed [25] and already
been tested for realistic nuclei in the study of giant reso-
nances built on the correlated ground state [26,27]. Since
the commutation relation [A,B] = [a+

αaα′ , a+
β a

+
γ aγ′aβ′ ] in

eq. (42) becomes a sum of two-body operators, we find

〈Φ0|[H, [a+
αaα′ , a+

β a
+
γ aγ′aβ′ ]]|Φ0〉 = 0 (49)

which holds due to eq. (46). This means that the coupling
matrices are symmetric, that is,

〈Φ0|[[a+
β a

+
γ aγ′aβ′ ,H], a+

αaα′ ]|Φ0〉 =

〈Φ0|[[a+
αaα′ ,H], a+

β a
+
γ aγ′aβ′ ]|Φ0〉 (50)

for the correlated ground state in TDDM. The ERPA
equations based on the TDDM ground state are formu-
lated using the equation of motion approach [22] as

〈Ψ0|[[a+
αaα′ ,H], Q+]|Ψ0〉 = ω〈Ψ0|[a+

αaα′ , Q+]|Ψ0〉 , (51)

〈Ψ0|[[: a+
αa

+
β aβ′aα′ :,H], Q+]|Ψ0〉 =

ω〈Ψ0|[: a+
αa

+
β aβ′aα′ :, Q+]|Ψ0〉, (52)

where the operator Q+ is defined by

Q+ =
∑

(xλλ′a+
λ aλ′ + Xλ1λ2λ′

1λ′
2

: a+
λ1
a+

λ2
aλ′

2
aλ′

1
:) (53)

and |Ψ0〉 is assumed to have the following properties:

Q+|Ψ0〉 = |Ψ〉 , (54)
Q|Ψ0〉 = 0 . (55)

In eqs. (52) and (53), : : stands for : a+
αa

+
β aβ′aα′

:= a+
αa

+
β aβ′aα′ − A(a+

αaα′ 〈Ψ0|a+
β aβ′ |Ψ0〉 + a+

β aβ′

〈Ψ0|a+
αaα′ |Ψ0〉), where A is an antisymmetrization oper-

ator. The above equation can be written in matrix form(
A C
B D

)(
x
X

)
= ω

(
S1 T1

T2 S2

)(
x
X

)
, (56)
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where each matrix element is given by

S1(α′α : λλ′) = 〈Ψ0|[a+
αaα′ , a+

λ aλ′ ]|Ψ0〉, (57)
S2(α′β′αβ : λ1λ2λ

′
1λ

′
2) =

〈Ψ0|[: a+
αa

+
β aβ′aα′ :, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Ψ0〉, (58)

T1(α′α : λ1λ2λ
′
1λ

′
2) = 〈Ψ0|[a+

αaα′ , : a+
λ1
a+

λ2
aλ′

2
aλ′

1
:]|Ψ0〉,

(59)
T2(α′β′αβ : λλ′) = 〈Ψ0|[: a+

αa
+
β aβ′aα′ :, a+

λ aλ′ ]|Ψ0〉, (60)

A(α′α : λλ′) = 〈Ψ0|[[a+
αaα′ ,H], a+

λ aλ′ ]|Ψ0〉, (61)

B(α′β′αβ : λλ′) = 〈Ψ0|[[: a+
αa

+
β aβ′aα′ :,H], a+

λ aλ′ ]|Ψ0〉,
(62)

C(α′α : λ1λ2λ
′
1λ

′
2) =

〈Ψ0|[[a+
αaα′ ,H], : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Ψ0〉, (63)

D(α′β′αβ : λ1λ2λ
′
1λ

′
2) =

〈Ψ0|[[: a+
αa

+
β aβ′aα′ :,H], : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]|Ψ0〉. (64)

When the above matrices are evaluated, the ground state
|Ψ0〉 is replaced by |Φ0〉 in TDDM. Then all matrices in
the above are written in terms of n0

αα′ and C0
αβα′β′ , which

are shown in appendix B. Due to eqs. (45) and (46), the
above matrices have the following symmetries:

A(α′α : λλ′) = A(λ′λ : αα′) = A(λλ′ : α′α)∗, (65)

B(α′β′αβ : λλ′) = C(λ′λ : αβα′β′) = C(λλ′ : α′β′αβ)∗.
(66)

This version of ERPA gives zero excitation energy to spu-
rious modes associated with operators O which commute
with H and consist of one-body and (or) two-body op-
erators. This is because ω〈Ψ0|O|Ψ〉 = 〈Ψ0|[H,O]|Ψ〉 = 0
holds due to eqs. (51) and (52). Although the coupling
matrix between the one-body and two-body amplitudes
is symmetric, the Hamiltonian matrix on the left-hand
side of eq. (56) is not yet Hermitian because D = D+

does not hold. This originates in the fact that 〈Φ0|[H,
[: a+

αa
+
β aβ′aα′ :, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]]|Φ0〉 �= 0. In order to ob-

tain a Hermitian Hamiltonian matrix without any trun-
cation of the two-body amplitudes, we need to impose

〈Φ0|[H, a+
αa

+
β a

+
γ aγ′aβ′aα′ ]|Φ0〉 = 0 (67)

in addition to eqs. (45) and (46). This condition guaran-
tees 〈Φ0|[H, [: a+

αa
+
β aβ′aα′ :, : a+

λ1
a+

λ2
aλ′

2
aλ′

1
:]]|Φ0〉 = 0,

and thereby

D(α′β′αβ : λ1λ2λ
′
1λ

′
2) = D(λ′1λ

′
2λ1λ2 : αβα′β′) =

D(λ1λ2λ
′
1λ

′
2 : α′β′αβ)∗. (68)

Equation (67) is explicitly shown in appendix B. For a
Hermitian Hamiltonian matrix the orthonormal condition
is given by [28]

(x∗µ′X∗
µ′)

(
S1 T1

T2 S2

)(
xµ

Xµ

)
= δµµ′ , (69)

where xµ and Xµ constitute an eigenstate of eq. (56) with
ω = ωµ. The completeness relation becomes

∑
µ

(
xµ

Xµ

)
(x∗µX

∗
µ)

(
S1 T1

T2 S2

)
= I. (70)

The transition amplitudes for one-body and two-body op-
erators, z = 〈Ψ0|a+

αaα′ |Ψ〉 and Z=〈Ψ0| : a+
αa

+
β aβ′aα′ : |Ψ〉,

respectively, are calculated as follows:
(
z
Z

)
=

(
S1 T1

T2 S2

)(
x
X

)
. (71)

Equation (56) has a certain similarity with the so-called
Self-Consistent RPA (SCRPA) equations [22,29,30], ex-
tended to include higher configurations. In case the
Xλ1λ2λ′

1λ′
2

amplitudes are dropped in eq. (53), eq. (56)
reduces to something similar to what has become known
as renormalized RPA (r-RPA) [31]. The main difference
seems to come from the fact that here eq. (45) serves to
determine the occupation matrix n0

αα′ , whereas in r-RPA
eq. (45) is used to establish the single-particle basis. It
should be interesting to investigate this relation more in
detail in the future.

5 Summary

The necessary conditions that the spurious state associ-
ated with the translational motion and the double spuri-
ous mode have zero excitation energy in Extended ERPA
(ERPA) were investigated using the small-amplitude limit
of the time-dependent density-matrix theory (STDDM).
The reason why STDDM was used is that it has a quite
general form of the ERPA kind based on the HF ground
state. In the case of the single spurious state it is found
that ERPA, which keeps all components of the one-body
amplitudes, gives the spurious state at zero excitation en-
ergy. This does not depend on approximations for the two-
body amplitudes as long as they are properly antisym-
metrized. For example, ERPA with only the 2p-2h and
2h-2p components of the two-body amplitudes preserves
this property of the single spurious state. In the case of the
double spurious state, all components of the one-body and
two-body amplitudes, if they couple, are found necessary
to yield the mode at zero excitation energy. Of course, no
truncation in single-particle space should be made in both
cases. The Kohn theorem for the single and double Kohn
modes and the continuity equations for transition densi-
ties and currents were also investigated and found to hold
under the same conditions as those necessary for the spu-
rious states. It was pointed out that STDDM inherently
has asymmetry and non-hermiticity, although it conserves
various physical properties as mentioned above. A formu-
lation of ERPA with hermiticity was also presented using
TDDM, in which it was discussed that a three-body cor-
relation matrix needs to be included in the description of
ground-state correlations. The investigations in this work
were performed for the spurious translational motion. It
seems, however, clear that analogous considerations can
be made for any spontaneously broken symmetry. An in-
teresting case could be the coupling of quark-antiquark to
the four-quark sector using, e.g. the Nambu–Jona-Lasinio
model [32]. In this case one knows that chiral symmetry
is spontaneously broken [32] and therefore in the chiral
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limit a double Goldstone mode (two pions) should ap-
pear. In the case of finite current quark masses analogous
equations to those yielding the Kohn modes considered
here should exist, actually well known as the Gell-Mann–
Oakes–Renner relation [33]. To our knowledge the issue of
the double spurious mode in ERPAs is taken up for the
first time in this work.

Appendix A.

When ψα is chosen to be an eigenstate of the mean-field
Hamiltonian (eq. (47)), eqs. (45) and (46) become [8]

(εα′ − εα)n0
αα′ =

∑
λ1λ2λ3

(C0
λ1λ2α′λ3

〈αλ3|v|λ1λ2〉

−C0
αλ3λ1λ2

〈λ1λ2|v|α′λ3〉) , (A.1)

(εα′ + εβ′ − εα − εβ)C0
αβα′β′ =

B0
αβα′β′ + P 0

αβα′β′ + H0
αβα′β′ , (A.2)

where

B0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉A

×[(δαλ1 − n0
αλ1

)(δβλ2 − n0
βλ2

)n0
λ3α′n0

λ4β′

−n0
αλ1

n0
βλ2

(δλ3α′ − n0
λ3α′)(δλ4β′ − n0

λ4β′)], (A.3)

P 0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉

×[(δαλ1δβλ2 − δαλ1n
0
βλ2

− n0
αλ1

δβλ2)C0
λ3λ4α′β′

−(δλ3α′δλ4β′ − δλ3α′n0
λ4β′ − n0

λ3α′δλ4β′)C0
αβλ1λ2

],

(A.4)

H0
αβα′β′ =

∑
λ1λ2λ3λ4

〈λ1λ2|v|λ3λ4〉A

×[δαλ1(n0
λ3α′C0

λ4βλ2β′ − n0
λ3β′C0

λ4βλ2α′ + C0
λ3λ4βα′λ2β′)

+δβλ2(n0
λ4β′C0

λ3αλ1α′ − n0
λ4α′C0

λ3αλ1β′ + C0
λ4λ3αβ′λ1α′)

−δα′λ3(n0
αλ1

C0
λ4βλ2β′ − n0

βλ1
C0

λ4αλ2β′ + C0
αλ4βλ1λ2β′)

−δβ′λ4(n0
βλ2

C0
λ3αλ1α′ − n0

αλ2
C0

λ3βλ1α′ + C0
βλ3αλ2λ1α′)].

(A.5)

The three-body correlation matrix C0
αβγα′β′γ′ is also

included in eq. (A.5). The equation for C0
αβγα′β′γ′ is

obtained by neglecting the four-body amplitudes and
becomes

(εα′ + εβ′ + εγ′ − εα − εβ − εγ)C0
αβγα′β′γ′ =

Uαβγα′β′γ′ + Uαβγβ′γ′α′ − Uαβγα′γ′β′

−U∗
α′β′γ′αβγ − U∗

α′β′γ′βγα + U∗
α′β′γ′αγβ

+Vαβγα′β′γ′ + Vαβγβ′γ′α′ − Vαβγα′γ′β′

−V ∗
α′β′γ′αβγ − V ∗

α′β′γ′βγα + V ∗
α′β′γ′αγβ , (A.6)

where

Uαβγα′β′γ′ = −
∑
λ1λ2

[〈λ1λ2|v|α′β′〉A(n0
γλ1

C0
αβλ2γ′

−n0
βλ1

C0
αγλ2γ′ + n0

αλ1
C0

βγλ2γ′)

+〈λ1λ2|v|α′β′〉C0
αβγλ1λ2γ′ ], (A.7)

Vαβγα′β′γ′ = −
∑

λ1λ2λ3

〈λ1λ2|v|α′λ3〉(−n0
λ3γ′n0

γλ2
C0

αβλ1β′

+n0
λ3γ′C0

αβγλ1λ2β′

+C0
αβλ1λ2

C0
γλ3β′γ′ − C0

αβλ1β′C0
γλ3λ2γ′

+all other exchange terms). (A.8)

Equations for correlation matrices of higher ranks may
be formulated according to the truncation rules given in
ref. [12].

Appendix B.

The matrix elements of eqs. (57)-(60) are explicitly shown
below:

S1(α′α : λλ′) = n0
λ′αδα′λ − n0

α′λδαλ′ , (B.1)

T1(α′α : λ1λ2λ
′
1λ

′
2) = C0

λ′
1λ′

2αλ2
δα′λ1 + C0

α′λ′
1λ1λ2

δαλ′
2

−C0
α′λ′

2λ1λ2
δαλ′

1
− C0

λ′
1λ′

2αλ1
δα′λ2 , (B.2)

T2(α′β′αβ : λλ′) = C0
λ′β′αβδα′λ + C0

α′β′λαδβλ′

−C0
α′β′λβδαλ′ − C0

λ′α′αβδβ′λ (B.3)

S2(α′β′αβ : λ1λ2λ
′
1λ

′
2) =

A(δα′λ1δβ′λ2)(A(n0
λ′

1αn
0
λ′

2β) + C0
λ′

1λ′
2αβ)

−A(δαλ′
1
δβλ′

2
)(A(n0

α′λ1
n0

β′λ2
) + C0

α′β′λ1λ2
)

+F (α′β′αβ : λ1λ2λ
′
1λ

′
2) − F (α′β′αβ : λ1λ2λ

′
2λ

′
1)

−F (α′β′βα : λ1λ2λ
′
1λ

′
2) + F (α′β′βα : λ1λ2λ

′
2λ

′
1)

−F (λ′1λ
′
2λ1λ2 : αβα′β′) + F (λ′1λ

′
2λ2λ1 : αβα′β′)

+F (λ′1λ
′
2λ1λ2 : αββ′α′) − F (λ′1λ

′
2λ2λ1 : αββ′α′),

(B.4)

where

F (α′β′αβ : λ1λ2λ
′
1λ

′
2) = δαλ′

1
[A(n0

α′λ1
n0

β′λ2
)n0

λ′
2β

+n0
λ′

2βC
0
α′β′λ1λ2

+ n0
α′λ1

C0
β′λ′

2λ2β − n0
β′λ1

C0
α′λ′

2λ2β

−n0
α′λ2

C0
β′λ′

2λ1β + n0
β′λ2

C0
α′λ′

2λ1β + C0
α′β′λ′

2λ1λ2β ].

(B.5)

The three-body correlation matrix is also included in
eq. (B.5). The matrix elements A,B,C, and D are given in
the following. For simplicity, terms containing C0

αβγα′β′γ′

are not shown. They appear in B,C, and D: Wherever
there is a term containing n0

αα′C0
βγβ′γ′ , there exists a

corresponding term with C0
αβγα′β′γ′ . The expressions for

A,B,C, and D are not unique and their symmetry prop-
erties are not necessarily apparent. Equations (45), (46),
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and (67) allow us to take other expressions and guarantee
symmetry properties:

A(α′α : λλ′) = (εα′ − εα)(δλα′n0
λ′α − δλ′αn

0
α′λ)

+
∑
γδ

[〈γδ|v|αλ〉(A(n0
λ′γn

0
α′δ) + C0

λ′α′γδ)

+〈λ′α′|v|δγ〉(A(n0
γλn

0
δα) + C0

δγαλ)

−〈λ′δ|v|αγ〉A(n0
γλn

0
α′δ + C0

α′γδλ)

−〈γα′|v|δλ〉A(n0
λ′γn

0
δα + C0

λ′δγα)]

−
∑
γδγ′

(〈α′γ|v|δγ′〉δλ′αC
0
δγ′λγ + 〈γδ|v|αγ′〉δλα′C0

λ′γ′γδ),

(B.6)

B(α′β′αβ : λλ′) =∑
γ

{〈λ′γ|v|αβ〉A[A(n0
α′λn

0
β′γ) + C0

α′β′λγ ]

+〈α′β′|v|λγ〉A[A(n0
λ′αn

0
γβ) + C0

λ′γαβ ]}
+H(α′β′αβ : λλ′) −H(β′α′αβ : λλ′)
+H∗(αβα′β′ : λ′λ) −H∗(βαα′β′ : λ′λ)

+I(α′β′αβ : λλ′) − I(α′β′βα : λλ′)
+I∗(αβα′β′ : λ′λ) − I∗(αββ′α′ : λ′λ), (B.7)

C(α′α : λ1λ2λ
′
1λ

′
2) = B(λ′1λ

′
2λ1λ2 : αα′), (B.8)

where

H(α′β′αβ : λλ′) = −δλα′{(εα + εβ − εα′ − εβ′)C0
λ′β′αβ

+
∑
γδ

(〈γδ|v|αβ〉(A(n0
λ′γn

0
β′δ) + C0

λ′β′γδ)

−
∑
γδγ′

[〈γδ|v|αγ′〉A(n0
λ′γn

0
β′δn

0
γ′β + n0

λ′γC
0
β′γ′δβ

−n0
β′γC

0
λ′γ′δβ) + 〈γδ|v|αγ′〉n0

γ′βC
0
λ′β′γδ

−〈γδ|v|βγ′〉A(n0
λ′γn

0
β′δn

0
γ′α + n0

λ′γC
0
β′γ′δα

−n0
β′γC

0
λ′γ′δα) − 〈γδ|v|βγ′〉n0

γ′αC
0
λ′β′γδ

+〈β′γ|v|δγ′〉A(n0
λ′γn

0
δβn

0
γ′α + n0

γ′αC
0
δλ′βγ

−n0
γ′βC

0
δλ′αγ) + 〈β′γ|v|δγ′〉n0

λ′γC
0
γ′δαβ ]}, (B.9)

I(α′β′αβ : λλ′) =
∑
γδ

{[〈γδ|v|αλ〉A(n0
α′γn

0
β′δn

0
λ′β

+n0
α′γC

0
β′λ′δβ − n0

β′γC
0
α′λ′δβ)

+〈γδ|v|αλ〉(n0
λ′βC

0
α′β′γδ + n0

λ′γC
0
α′β′δβ)]

−〈λ′γ|v|αδ〉A[A(n0
α′λn

0
β′γ)n0

δβ + n0
δλC

0
α′β′γβ

+n0
δβC

0
α′β′λγ + n0

α′λC
0
β′δγβ − n0

β′λC
0
α′δγβ

−n0
α′γC

0
β′δλβ + n0

β′γC
0
α′δλβ ]}. (B.10)

The matrix D is given as

D(α′β′αβ : λ1λ2λ
′
1λ

′
2) =

(εα′ + εβ′ − εα − εβ)S2(α′β′αβ : λ1λ2λ
′
1λ

′
2)

+〈λ′1λ′2|v|αβ〉A(A(n0
α′λ1

n0
β′λ2

) + C0
α′β′λ1λ2

)

+〈α′β′|v|λ1λ2〉A(A(n0
λ′

1αn
0
λ′

2β) + C0
λ′

1λ′
2αβ)

+J(α′β′αβ : λ1λ2λ
′
1λ

′
2) + J∗(αβα′β′ : λ′1λ

′
2λ1λ2)

+K(α′β′αβ : λ1λ2λ
′
1λ

′
2) + L(α′β′αβ : λ1λ2λ

′
1λ

′
2)

+all other exchange terms of K and L, (B.11)

where

J(α′β′αβ : λ1λ2λ
′
1λ

′
2) = −A(δλ1α′δλ2β′)

{ ∑
γδ

[〈γδ|v|αβ〉

−
∑
γ′

(〈γδ|v|αγ′〉n0
γ′β − 〈γδ|v|βγ′〉n0

γ′α))]

(A(n0
λ′

1γn
0
λ′

2δ) + C0
λ′

1λ′
2γδ) +

∑
γδγ′

[〈γδ|v|αγ′〉(n0
λ′

1βC
0
γ′λ′

2γδ

−n0
λ′

2βC
0
γ′λ′

1γδ − n0
λ′

1γC
0
γ′λ′

2βδ + n0
λ′

2γC
0
γ′λ′

1βδ)

−〈γδ|v|βγ′〉(n0
λ′

1αC
0
γ′λ′

2γδ − n0
λ′

2αC
0
γ′λ′

1γδ

−n0
λ′

1γC
0
γ′λ′

2αδ + n0
λ′

2γC
0
γ′λ′

1αδ)]
}
, (B.12)

K(α′β′αβ : λ1λ2λ
′
1λ

′
2) =

δλ1α′

{∑
γδ

[〈γδ|v|αβ〉A(n0
λ′

1γn
0
λ′

2δn
0
β′λ2

+ n0
λ′

1γC
0
λ′

2β′δλ2
)

+〈γδ|v|αλ2〉A(n0
λ′

1γn
0
λ′

2βn
0
β′δ + n0

λ′
1γC

0
λ′

2β′βδ)

+〈γβ′|v|λ2δ〉A(n0
δβn

0
λ′

1αn
0
λ′

2γ + n0
δβC

0
λ′

1λ′
2αγ)

+all other exchange terms]

−
∑
γδγ′

[〈γδ|v|αγ′〉A(n0
λ′

1γn
0
β′δn

0
λ′

2βn
0
γ′λ2

+n0
λ′

1γn
0
β′δC

0
λ′

2γ′βλ2

+C0
λ′

1β′γδC
0
λ′

2γ′βλ2
) − 〈γβ′|v|γ′δ〉A(n0

λ′
1αn

0
λ′

2γn
0
γ′βn

0
δλ2

+n0
γ′βn

0
λ′

1αC
0
λ′

2δγλ2
+ C0

λ′
2γ′αβC

0
λ′

1δγλ2
)

+all other exchange terms]
}
, (B.13)

L(α′β′αβ : λ1λ2λ
′
1λ

′
2) =

−
∑

γ

[〈α′γ|v|λ1λ2〉(n0
β′γn

0
λ′

1αn
0
λ′

2β + n0
β′γC

0
λ′

1λ′
2αβ)

+all other exchange terms]

+
∑
γδ

[〈α′γ|v|λ1δ〉A(n0
δβn

0
λ′

1αn
0
λ′

2γn
0
β′λ2

+n0
β′λ2

n0
δβC

0
λ′

1λ′
2αγ + C0

β′δλ2βC
0
λ′

1λ′
2αγ)

+all other exchange terms]. (B.14)

Finally, we discuss a relation between eq. (56) and a set
of the STDDM equations (eqs. (3) and (4)). When the
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ground state is approximated by the HF one, eqs. (B.1)-
(B.4) become

S1(α′α : λλ′) = (fα − fα′)δαλ′δα′λ, (B.15)
S2(α′β′αβ : λ1λ2λ

′
1λ

′
2) =

A(δαλ′
1
δβλ′

2
)A(δα′λ1δβ′λ2)F 0

α′β′αβ , (B.16)

T1(α′α : λ1λ2λ
′
1λ

′
2) = T2(α′β′αβ : λλ′) = 0, (B.17)

where

F 0
α′β′αβ = fαfβ f̄α′ f̄β′ − f̄αf̄βfα′fβ′ . (B.18)

Equations (B.6)-(B.8) and (B.11) become the following:

A(α′α : λλ′) = [(εα′ − εα)δαλ′δα′λ

+〈λ′α′|v|αλ〉A(fα′ − fα)](fλ′ − fλ), (B.19)

B(α′β′αβ : λλ′) =
−[(f̄αf̄βfβ′ + fαfβ f̄β′)〈λ′β′|v|αβ〉Aδα′λ

−(f̄αf̄βfα′ + fαfβ f̄α′)〈λ′α′|v|αβ〉Aδβ′λ

−(f̄βfα′fβ′ + fβ f̄α′ f̄β′)〈α′β′|v|λβ〉Aδαλ′

+(f̄αfα′fβ′ + fαf̄α′ f̄β′)〈α′β′|v|λα〉Aδβλ′ ](fλ′ − fλ),
(B.20)

C(α′α : λ1λ2λ
′
1λ

′
2) = B(λ′1λ

′
2λ1λ2 : αα′), (B.21)

D(α′β′αβ : λ1λ2λ
′
1λ

′
2) = F 0

λ1λ2λ′
1λ′

2

×
{

(εα′ + εβ′ − εα − εβ)A(δαλ′
1
δβλ′

2
)A(δα′λ1δβ′λ2)

+(1 − fα′ − fβ′)〈α′β′|v|λ1λ2〉AA(δαλ′
1
δβλ′

2
)

−(1 − fα − fβ)〈λ′1λ′2|v|αβ〉AA(δα′λ1δβ′λ2)
+(fα − fα′)[〈α′λ′1|v|αλ1〉Aδβ′λ2δβλ′

2

+〈α′λ′2|v|αλ2〉Aδβ′λ1δβλ′
1

−〈α′λ′1|v|αλ2〉Aδβ′λ1δβλ′
2
− 〈α′λ′2|v|αλ1〉Aδβ′λ2δβλ′

1
]

+(fβ − fβ′)[〈β′λ′1|v|βλ1〉Aδα′λ2δαλ′
2

+〈β′λ′2|v|βλ2〉Aδα′λ1δαλ′
1

−〈β′λ′1|v|βλ2〉Aδα′λ1δαλ′
2
− 〈β′λ′2|v|βλ1〉Aδα′λ2δαλ′

1
]

−(fα − fβ′)[〈β′λ′1|v|αλ1〉Aδα′λ2δβλ′
2

+〈β′λ′2|v|αλ2〉Aδα′λ1δβλ′
1

−〈β′λ′1|v|αλ2〉Aδα′λ1δβλ′
2
− 〈β′λ′2|v|αλ1〉Aδα′λ2δβλ′

1
]

−(fα − fβ′)[〈β′λ′1|v|αλ1〉Aδα′λ2δβλ′
2

+〈β′λ′2|v|αλ2〉Aδα′λ1δβλ′
1

−〈β′λ′1|v|αλ2〉Aδα′λ1δβλ′
2
− 〈β′λ′2|v|αλ1〉Aδα′λ2δβλ′

1
]
}
.

(B.22)

If S1x and S2X which appear in the equation for X,
that is, Bx + DX = ωS2X, are replaced by x and X,
respectively, the equation for X is equivalent to eq. (4).
However, the replacement S1x → x and S2X → X in
Ax + CX = ωS1x cannot give eq. (3) because of the

symmetric coupling between x and X. Since the expression
for C (eq. (B.8)) is not unique as mentioned above, we can
always take an expression for C which leads to the same
coupling matrix as in eq. (3) in the HF limit. Such an
expression for C is the following:

C(α′α : λ1λ2λ
′
1λ

′
2) =

F 0
λ1λ2λ′

1λ′
2
(〈α′λ′2|v|λ1λ2〉Aδλ′

1α − 〈α′λ′1|v|λ1λ2〉Aδλ′
2α

−〈λ′1λ′2|v|αλ2〉Aδλ1α′ + 〈λ′1λ′2|v|αλ1〉Aδλ2α′). (B.23)
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